Group VII A Elements (Halogen Family)
The word halogen means salt former. Halogens belong to group VII-A or group 7 or group 17 of the periodic table.
This group consists of the elements which are given in the following.

Electronic Configuration of Group VII-A (Halogens)
Fluorine (F) (1s2, 2s2, 2p5 )
Chlorine (Cl) (1s2, 2s2, 2p6, 3s2, 3p5)
Bromine (Br) (1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p5 )
Iodine (I) (1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2, 4d10, 5p5)
Astatine (At) (1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2, 4d10, 5p6, 6s2, 4f14, 5d10, 6p5)
General Properties of group 7A (VII A)
Group VII A general valence shell configuration
Their general valence shell configuration of group 7 (Halogens) is ns2, np5.
Non-metals
All halogens are non-metals.
Diatomic molecules
They exist as discrete diatomic molecules F2, Cl2, Br2, I2, At2.
Group VII A atomic radii
Their atomic radii increase down the group.
Group VII A electronegativity
Their electronegativities are high and decrease down the group. Fluorine has the highest electronegativity which is four.
Halogens Group VII A Electron affinity
Electron affinity is the energy released or absorbed when an electron is added to a gaseous atom or ion. It is the measure of attraction between incoming electrons and the nucleus. Higher is the attraction higher will be the electron affinity.

Electron affinity Trend
F < Cl > B r > I > At
or
At < I < Br < F < Cl
Element: F Cl Br I At
Electron Affinity (kJ/mol)
328 349 325 295 270
The trend is not regular. Fluorine is showing an exceptionally low value than chlorine. Due to its very smaller atomic size valence shell is smaller so electrons present in it repel the incoming electron. This difference between the energy released due to attraction by the nucleus and energy absorbed during repulsion by the electrons is less and therefore, the electron affinity of fluorine is less than chlorine.
Melting and Boiling points of Halogens
Their melting and boiling points of halogens increase down the group. Thus from top to bottom, they change from gas to solid. Astatine is radioactive and its half-life is 8.3hrs.
Element State M.P B.P
Fluorine gas -219.6oC -188.2oC pale yellow
Chlorine gas -101.0oC -34.7oC yellowish green
Bromine liquid -7.2oC 59oC dark red (vapors reddish brown)
Iodine solid 113.7oC 184oC dark crumbly (vapors violet)
Astatine solid 300oC 380oC black (vapors dark)
Halogens Bond Enthalpy
Bond Enthalpy is the energy required to break one mole of chemical bonds in gaseous molecules to form gaseous atoms.
Cl2(g) → 2Cl(g) ∆H = 242 kJ/mol
F2 has an abnormally low bond enthalpy than chlorine due to its smaller atomic size. Due to the smaller size distance between nuclei of two atoms will be less and hence repulsion between nuclei will be more. As a result, bond will be weaker.
Halogens are good oxidizing agents
Halogens are good oxidizing agents; however, their oxidizing power decreases down the group.
Their oxidizing power depends upon
- Dissociation energy more is dissociation energy less is oxidizing power.
- Electron affinity: more is electron affinity more is oxidizing power.
- Reduction potential: more is reduction potential more is oxidizing power.
The dominating factor is reduction potential.
Order of oxidizing power is F2 > Cl2 > Br2 > I2
Standard reduction potential (V) 2.87 1.36 1.06 0.54
Halogens take electrons from other elements and thus oxidize them.
2Na + Cl2 → 2Na+ Cl–
e.g. (i) Fluorine and chlorine can oxidize coloured dyes to colourless. Thus they are used as bleaching agents.
e.g. (ii) Chlorine water oxidizes KI to iodine and the solution turns brown due to the formation of iodine.
Cl2(g) + KI(aq) → KCl(aq) + I2(s)
In this reaction, Cl2 has oxidized I– to I2. Similarly, Cl2 can oxidize Br– to Br2.
Reducing power of halide ions depends upon their sizes.
The larger the size of the halide ion more is its reducing power. Larger ions can easily donate an electron and thus can easily reduce other substances.
The order of reducing power is :
I– > Br – > Cl– > F–
Ionic radius (nm)
0.216 0.195 0.181 0.136
e.g. (i) Br – ion reduces sulphate ion of sulphuric acid to SO2.
H2SO4 + 2H+ + 2Br – → Br2 + SO2 + 2H2O
e.g. (ii) I – ion is larger than Br – ion so it is a stronger reducing agent than Br – ion. It reduces the sulphate ion of sulphuric acid to S-2 ion.
H2SO4 + 8H+ + 8I – → 4I2 + H2S + 2H2O
Halogens have irritating odours and they attack the skin.
Bromine causes burns that heal slowly.
Halogens have high ionization energies, electron affinities and electronegativities.
Group 7A Halogens Common oxidation state
Common oxidation state for halogens is -1, but they also show +1, +3, +5, and +7 oxidation states in their compounds. However, fluorine does not show a positive oxidation state as it has the highest electronegativity.
Ionic Compounds Formation
They form ionic compounds with group I-A and group II-A elements.
(xv) Halogens directly react with hydrogen under different conditions to produce their hydrides (Hydrogen halides).
H2 + F2 → 2HF vigorous reaction
H2 + Cl2 → 2HCl in presence of sunlight
H2 + Br2 → 2HBr in presence of sunlight
H2 + I2 ⇋ 2HI in presence of sunlight
The order of reactivity of halogens towards this reaction is
F2 > Cl2 > Br2 > I2
As the size of halogen increases, the H – X bond energy decreases, and thus, the stability of halide decreases and the bond’s polarity decreases.
- The order of stability and polarity is HF > HCl > HBr > HI
- While the order of reactivity of halogen acids is HI > HBr >HCl > HF
- The acidic strength of hydrogen halides increases down the group. As the stability of halogen acids decreases down the group accordingly their acidic strength increases down group.
Order of acid strength HI > HBr > HCl > HF
Recommended video:
Why hydrogen fluoride is a weaker acid than hydrochloric acid?
All halogens are highly soluble in water and are stronger acids. HF is also highly soluble in water but it is a weak acid.
Bond enthalpies of hydrogen halides decrease down the group.
As the group size of halogen increases so bond length increases and the hold of nuclei decreases on shared electrons so bond enthalpy decreases.
Also, the polarity of the molecule decreases down the group so the bond becomes weaker and thus bond enthalpy decrease.
Hydrogen halide H – F H – Cl H – Br H – I
Bond Enthalpy (kJ/mol) 568 432 366 298
Check out free Notes !!
-> Class 10 Chemistry Full book pdf
-> Class 11 Chemistry Full book pdf
-> Class 12 Chemistry Full book pdf
For joining Digital Kemistry Academy
Visit Digital Kemistry YouTube Channel for Free Chemistry Tutorials Now
Hey! Would you mind if I share your blog with my zynga group?
There’s a lot of folks that I think would really appreciate your content.
Please let me know. Thank you
Nice post. I learn something new and challenging on sites I stumbleupon every
day. It will always be helpful to read through articles from other authors and practice a little something from other websites.
Thanks, I’ve just been looking for info approximately this topic for a long time and yours is the greatest I’ve found out till now. However, what in regards to the conclusion? Are you positive concerning the source?