Fundamentals of Chemistry

Important Problems Practice

1. What is the mass of 5 moles of ice?

SOLUTION

Given no. of mole of ice =5 moles

Molecular mass of ice $(H_2O)=(2\times1)+(1\times16)=2+16$

Molecular mass of ice =18 amu

Number of moles = Mass in gram ÷ Molecular mass

Rearranging the formula

Mass in gram =number of moles × Molecular mass

Mass of ice in grams = $5 \times 18 = 90$ grams

2. During thunder storms, oxygen is transformed to ozone O₃. Determine the mass of ozone if a storm produces 9.05 moles of ozone.

Ozone is a molecular substance. Determine its molar mass and use it to convert moles to mass in grams.

9.05 moles of $O_3 \rightarrow ?$ g of O_3

Solution:

1 mole of $O_3 = 16 \times 3 = 48 g$

1 mole of
$$O_3$$
 = 48 g
So, 9.05 moles of O_3 = 48 g x 9.05
= 434.4g of O_3

3. When methane is burned, carbon dioxide is produced. How much CO₂ is created when 0.25 moles of CO₂ are produced?

SOLUTION

- 4. Calculate the moles of each of the following
- A. Balloon filled with 5g of hydrogen
- B. A block of ice that has mass of 100g

SOLUTION

a) Molar mass of $H_2 = 1.008 \times 2 = 2.016g$

1 mole of H_2 = 2.016g So, 2.016g of H_2 = 1 mole of H_2 1g of H_2 = 1/2.016 moles of H_2 5 gram of H_2 = 1÷2.016×5

5 gram of H_2 = 2.48 Moles of H_2

b) 1 Mole Of $H_2O = 2 \times 1.008 + 16$

1 Mole of $H_2O = 2.016 + 16$

1Mole of H₂O=18.016g

SO

1 gram of $H_2O = 1 \div 18.016$ moles

100 Gram of H₂O= 1÷18.016×100 moles

100 grams of H₂O=5.55 Moles of H₂O

5. Zn is a metal used to prevent corrosion by galvanizing steel. How many atoms are in 1.25 moles of zinc?

SOLUTION

1 mole of Zn contains = $23 6.022 \times 10^{23}$ atoms

1.25 moles of Zn contains = $6.022 \times 10^{23} \times 1.25 = 7.53 \times 10^{23}$ Zn atoms

6. Methane is one of the principal constituents of natural gas. Determine how many moles are in 0.5 moles of a pure methane sample.

SOLUTION

1 mole of CH4 contains = 6.022×10^{23} molecules

So, 0.5 moles of CH4 will contain = $6.022 \times 10^{23} \times 0.5 = 3.011 \times 10^{23}$ molecules

7. Titanium is a metal that is used in rockets. Calculate the number of moles in a sample containing 3.011×10²³ atoms

SOLUTION

 6.022×10^{23} atoms = 1 mole

 $3.011 \times 10^{23} \text{Atoms} \rightarrow ? \text{ mole}$

 6.022×10^{23} atoms = 1 mole of Ti

1 Ti atom = $1\div6.022\times10^{23}$ moles of Ti

 3.011×10^{23} Ti atoms = $1 \div (6.022 \times 10^{23}) \times 3.011 \times 10^{23}$ moles of Ti

=0.5 moles of Ti

8. Determine the number of moles in 60 grams of carbon dioxide.

SOLUTION

Mass of $CO_2 = 60$ g

The molar mass of CO₂= 12g+2(16)g

=12g+32g

=44g/mol

Number of moles of CO₂=Mass in grams ÷ molar mass

Number of moles of CO₂=60/44

=1.364 moles

9. How many moles of hydrogen are there in 8.9×10²³ hydrogen atoms

SOLUTION

Number of atoms of hydrogen = 8.9×10^{23}

Avagadro number = N_A =6.023×10²³

Number of moles of hydrogen = Number of atoms or molecules / Avogadro number

Number of moles of hydrogen =8.9×10²³ ÷6.023×10²³

=1.48 moles

10. Determine the molar masses of water, sodium, nitrogen, and sucrose

SOLUTION

a) Molecular mass of H₂O

$$= 1 \times 2 + 16 = 18$$

Therefore, mass of 1 mole of water = 18 g

- b) 1 mole of sodium (Na) = 23g
- c) Nitrogen occurs as diatomic molecules.

Molecular mass of nitrogen (N_2)= 14 x 2

= 28amu

Therefore, mass of 1 mole of $N_2 = 28 g$

d) Molecular mass of C₁₂H₂₂O₁₁

= 12x12 + 1x22 + 16x11

= 144 + 22 + 176

Therefore, mass of 1 mole of sucrose = 342g

11. Calculate the number of moles of butane (C_4H_{10}) in 151g of butane?

SOLUTION

Mass= 151 g

Molecular mass of butane= (12×4) + (1×10) = 58amu

Number of moles = Mass ÷ Molecular mass

Number of moles =151÷58

Number of moles = 2.63 moles

12. Calculate the mass of 6.68 ×10²³ molecules of PCl₃

SOLUTION

Number of molecules =6.68 ×10²³ molecules

Avogadro number= 6.023×10²³

Molecular mass of PCl₃= $(1\times30.97)+(3\times35.5)$

Molecular mass of PCl₃=30.97+106.5=137.47 amu

First Calculating moles

Number of moles = Number of molecules/ Avogadro number

Number of moles = 6.68×10^{23} molecules $\div 6.023 \times 10^{23}$

Number of moles =1.10 mol

Mass in gram = Number of moles × molecular mass

Mass in gram = 1.10×137.47

Mass in gram =151.62g

13. Determine the number of molecules in 6.50 moles of CH₄

SOLUTION

Number of moles = 6.5 moles

Avogadro number = 6.023×10^{23}

Number of moles = Number of molecule / Avogadro's number

Number of molecules= No of moles × Avogadro's number

Number of molecules = $6.50 \times 6.023 \times 10^{23}$

Number of molecules =39.14×10²³

Number of molecules =3.914×10²⁴
